Semi-conservative high order scheme with numerical entropy indicator for intrusive formulations of hyperbolic systems
نویسندگان
چکیده
This work considers high order discretizations for the intrusive stochastic Galerkin and polynomial moment method. Applications to hyperbolic systems result in solutions that typically involve a large number of wave interactions must be resolved numerically. In reduce numerical oscillations, analytical entropy indicators are used perform CWENO-type reconstructions characteristic variables, when where non-smooth arise. The proposed method is analyzed random isentropic Euler equations. particular, semi-conservative scheme employed non-polynomial pressure computational cost, while still ensuring correct shock speeds.
منابع مشابه
Entropy Conservative and Entropy Stable Schemes for Nonconservative Hyperbolic Systems
The vanishing viscosity limit of nonconservative hyperbolic systems depends heavily on the specific form of the viscosity. Numerical approximations, such as the path consistent schemes of [C. Parés, SIAM J. Numer. Anal., 41 (2007), pp. 169–185], may not converge to the physically relevant solutions of the system. We construct entropy stable path consistent (ESPC) schemes to approximate nonconse...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملAdaptation and Assessment of a High Resolution Semi-discrete Numerical Scheme for Hyperbolic Systems with Source Terms and Stiffness
In this work we outline the details required in adapting the third-order semi-discrete numerical scheme of Kurganov and Levy [SIAM J. Sci. Comput. 22 (2000) 1461-1488.] to handle hyperbolic systems which include source terms. The performance of the scheme is then assessed against a fully discrete scheme, as well as reference solutions, on such problems as shock propagation in a Broadwell gas an...
متن کاملGradient Entropy Estimate and Convergence of a Semi-Explicit Scheme for Diagonal Hyperbolic Systems
In this paper, we consider diagonal hyperbolic systems with monotone continuous initial data. We propose a natural semi-explicit and upwind first order scheme. Under a certain non-negativity condition on the Jacobian matrix of the velocities of the system, there is a gradient entropy estimate for the hyperbolic system. We show that our scheme enjoys a similar gradient entropy estimate at the di...
متن کاملStable and conservative time propagators for second order hyperbolic systems
In this paper we construct a hierarchy of arbitrary high (even) order accurate explicit time propagators for semi-discrete second order hyperbolic systems. An accurate semi-discrete problem is obtained by approximating the corresponding spatial derivatives using high order accurate finite difference operators satisfying the summation by parts rule. In order to obtain a strictly stable semi-disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2023
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2023.112254